This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles -- a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92%, when 50 simultaneously moving obstacles populate the environment showing better performance than the state-of-the-art competitors.
translated by 谷歌翻译
Heuristic search algorithms, e.g. A*, are the commonly used tools for pathfinding on grids, i.e. graphs of regular structure that are widely employed to represent environments in robotics, video games etc. Instance-independent heuristics for grid graphs, e.g. Manhattan distance, do not take the obstacles into account and, thus, the search led by such heuristics performs poorly in the obstacle-rich environments. To this end, we suggest learning the instance-dependent heuristic proxies that are supposed to notably increase the efficiency of the search. The first heuristic proxy we suggest to learn is the correction factor, i.e. the ratio between the instance independent cost-to-go estimate and the perfect one (computed offline at the training phase). Unlike learning the absolute values of the cost-to-go heuristic function, which was known before, when learning the correction factor the knowledge of the instance-independent heuristic is utilized. The second heuristic proxy is the path probability, which indicates how likely the grid cell is lying on the shortest path. This heuristic can be utilized in the Focal Search framework as the secondary heuristic, allowing us to preserve the guarantees on the bounded sub-optimality of the solution. We learn both suggested heuristics in a supervised fashion with the state-of-the-art neural networks containing attention blocks (transformers). We conduct a thorough empirical evaluation on a comprehensive dataset of planning tasks, showing that the suggested techniques i) reduce the computational effort of the A* up to a factor of $4$x while producing the solutions, which costs exceed the costs of the optimal solutions by less than $0.3$% on average; ii) outperform the competitors, which include the conventional techniques from the heuristic search, i.e. weighted A*, as well as the state-of-the-art learnable planners.
translated by 谷歌翻译
Simultaneous localization and mapping (SLAM) is one of the key components of a control system that aims to ensure autonomous navigation of a mobile robot in unknown environments. In a variety of practical cases a robot might need to travel long distances in order to accomplish its mission. This requires long-term work of SLAM methods and building large maps. Consequently the computational burden (including high memory consumption for map storage) becomes a bottleneck. Indeed, state-of-the-art SLAM algorithms include specific techniques and optimizations to tackle this challenge, still their performance in long-term scenarios needs proper assessment. To this end, we perform an empirical evaluation of two widespread state-of-the-art RGB-D SLAM methods, suitable for long-term navigation, i.e. RTAB-Map and Voxgraph. We evaluate them in a large simulated indoor environment, consisting of corridors and halls, while varying the odometer noise for a more realistic setup. We provide both qualitative and quantitative analysis of both methods uncovering their strengths and weaknesses. We find that both methods build a high-quality map with low odometry noise but tend to fail with high odometry noise. Voxgraph has lower relative trajectory estimation error and memory consumption than RTAB-Map, while its absolute error is higher.
translated by 谷歌翻译
基于冲突的搜索(CBS)是一种广泛使用的算法,用于最佳地求解多代理探路(MAPF)问题。 CBS的核心思想是运行层次搜索,当在高级别的解决方案树上探索候选者的树时,在低级别上进行了针对特定代理的个人计划(受某些约束)进行。为了使运行时间的权衡取得最佳性,设计了有限的子最佳CB的不同变体,这改变了CBS的高级和低级搜索程序。此外,CBS的任何时间变体都存在将焦点搜索(FS)应用于CBS的高级搜索 - 任何时间BCB。然而,当我们简单地重新启动cbs的cbs与较低的亚XB绑定时,没有对这种算法的性能的全面分析。这项工作旨在填补这一空白。此外,我们介绍并评估了另一个在CBS上使用FS的CBS的随时随地。从经验上讲,我们证明其行为主要与任何时间BCB所证明的行为不同。最后,我们比较这两种算法从头开始,并表明在两个级别的CBS上使用焦点搜索在广泛的设置中可能是有益的。
translated by 谷歌翻译
在机器人研究中,在不平坦的地形中安全导航是一个重要的问题。在本文中,我们提出了一个2.5D导航系统,该系统包括高程图构建,路径规划和本地路径,随后避免了障碍。对于本地路径,我们使用模型预测路径积分(MPPI)控制方法。我们为MPPI提出了新的成本功能,以使其适应高程图和通过不平衡运动。我们在多个合成测试和具有不同类型的障碍物和粗糙表面的模拟环境中评估系统。
translated by 谷歌翻译
我们介绍了Pogema(https://github.com/airi-institute/pogema)一个沙盒,用于挑战部分可观察到的多代理探路(PO-MAPF)问题。这是一个基于网格的环境,专门设计为灵活,可调和可扩展的基准。它可以针对各种PO-MAPF量身定制,这些PO-MAPF可以作为计划和学习方法及其组合的绝佳测试基础,这将使我们能够填补AI计划和学习之间的差距。
translated by 谷歌翻译
Consensus clustering aggregates partitions in order to find a better fit by reconciling clustering results from different sources/executions. In practice, there exist noise and outliers in clustering task, which, however, may significantly degrade the performance. To address this issue, we propose a novel algorithm -- robust consensus clustering that can find common ground truth among experts' opinions, which tends to be minimally affected by the bias caused by the outliers. In particular, we formalize the robust consensus clustering problem as a constraint optimization problem, and then derive an effective algorithm upon alternating direction method of multipliers (ADMM) with rigorous convergence guarantee. Our method outperforms the baselines on benchmarks. We apply the proposed method to the real-world advertising campaign segmentation and forecasting tasks using the proposed consensus clustering results based on the similarity computed via Kolmogorov-Smirnov Statistics. The accurate clustering result is helpful for building the advertiser profiles so as to perform the forecasting.
translated by 谷歌翻译
In computational advertising, a challenging problem is how to recommend the bid for advertisers to achieve the best return on investment (ROI) given budget constraint. This paper presents a bid recommendation scenario that discovers the concavity changes in click prediction curves. The recommended bid is derived based on the turning point from significant increase (i.e. concave downward) to slow increase (convex upward). Parametric learning based method is applied by solving the corresponding constraint optimization problem. Empirical studies on real-world advertising scenarios clearly demonstrate the performance gains for business metrics (including revenue increase, click increase and advertiser ROI increase).
translated by 谷歌翻译
In cost-per-click (CPC) or cost-per-impression (CPM) advertising campaigns, advertisers always run the risk of spending the budget without getting enough conversions. Moreover, the bidding on advertising inventory has few connections with propensity one that can reach to target cost-per-acquisition (tCPA) goals. To address this problem, this paper presents a bid optimization scenario to achieve the desired tCPA goals for advertisers. In particular, we build the optimization engine to make a decision by solving the rigorously formalized constrained optimization problem, which leverages the bid landscape model learned from rich historical auction data using non-parametric learning. The proposed model can naturally recommend the bid that meets the advertisers' expectations by making inference over advertisers' historical auction behaviors, which essentially deals with the data challenges commonly faced by bid landscape modeling: incomplete logs in auctions, and uncertainty due to the variation and fluctuations in advertising bidding behaviors. The bid optimization model outperforms the baseline methods on real-world campaigns, and has been applied into a wide range of scenarios for performance improvement and revenue liftup.
translated by 谷歌翻译
t-SNE remains one of the most popular embedding techniques for visualizing high-dimensional data. Most standard packages of t-SNE, such as scikit-learn, use the Barnes-Hut t-SNE (BH t-SNE) algorithm for large datasets. However, existing CPU implementations of this algorithm are inefficient. In this work, we accelerate the BH t-SNE on CPUs via cache optimizations, SIMD, parallelizing sequential steps, and improving parallelization of multithreaded steps. Our implementation (Acc-t-SNE) is up to 261x and 4x faster than scikit-learn and the state-of-the-art BH t-SNE implementation from daal4py, respectively, on a 32-core Intel(R) Icelake cloud instance.
translated by 谷歌翻译